読者です 読者をやめる 読者になる 読者になる

DELAEMON BLOG

Live as if you were to die tomorrow. Learn as if you were to live forever.

入門ソーシャルデータ 語彙的多様性

コード

#! /usr/bin/env python
# -*- coding: utf-8 -*-
import twitter
import json

twitter_search = twitter.Twitter(domain="search.twitter.com")
search_results = []
for page in range(1,6):
  search_results.append(twitter_search.search(q="LesPaul", rpp=100, page=page))

tweets = [ r['text'] \
  for result in search_results\
    for r in result['results']]

words = []
for t in tweets:
  words += [w for w in t.split()]

cnt =  len(words)
ucnt = len(set(words))
vocabulary = 1.0 * ucnt / cnt 
print "vocabulary = " + str(vocabulary)

acnt = 1.0 * sum([len(t.split()) for t in tweets]) / len(tweets)
print "1 tweet average word count = " + str(acnt)

実行結果

python word_count.py
vocabulary = 0.663345786633
1 tweet average word count = 4.83734939759